首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1972篇
  免费   453篇
  国内免费   187篇
化学   1098篇
晶体学   101篇
力学   72篇
综合类   6篇
数学   26篇
物理学   1309篇
  2024年   2篇
  2023年   18篇
  2022年   51篇
  2021年   81篇
  2020年   84篇
  2019年   68篇
  2018年   62篇
  2017年   75篇
  2016年   139篇
  2015年   97篇
  2014年   127篇
  2013年   162篇
  2012年   165篇
  2011年   167篇
  2010年   120篇
  2009年   142篇
  2008年   153篇
  2007年   144篇
  2006年   142篇
  2005年   115篇
  2004年   89篇
  2003年   85篇
  2002年   55篇
  2001年   41篇
  2000年   49篇
  1999年   27篇
  1998年   17篇
  1997年   20篇
  1996年   22篇
  1995年   19篇
  1994年   20篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   7篇
  1989年   9篇
  1988年   1篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1983年   8篇
  1982年   3篇
  1979年   2篇
  1957年   1篇
排序方式: 共有2612条查询结果,搜索用时 30 毫秒
51.
A series of air‐stable spiro‐fused ladder‐type boron(III) compounds has been designed, synthesized, and the electrochemistry and photophysical behavior have been characterized. By simply varying the substituents on the pyridine ring and extending the π‐conjugation of the spiro framework, the emission color of these compounds can be easily fine‐tuned spanning the visible spectrum from blue to red. All compounds exhibit a broad and structureless emission band across the entire visible region, assigned as an intramolecular charge‐transfer transition originating from the thiophene of the spiro framework to the pyridine‐borane moieties. In addition, these compounds demonstrate high photoluminescence quantum yields of up to 0.81 in dichloromethane solution and 0.86 in doped thin films. Some of the compounds have also been employed as emissive materials, in which solution‐processed organic light‐emitting devices (OLEDs) with tunable emission colors spanning the visible spectrum from blue, green to red have been realized, demonstrating the potential applications of these boron compounds in OLEDs.  相似文献   
52.
A closed bipolar electrode (BPE) system was developed with electrochromic poly(3‐methylthiophene) (PMT) films electropolymerized on the ITO/rGO electrode as one pole of BPE in the reporting reservoir and the bare ITO electrode as another pole of BPE in the analyte reservoir, in which rGO represents reduced graphene oxide. Under a suitable driving voltage (Vtot), the electrochemical reduction/oxidation of electroactive probes, such as H2O2/glutathione (Glu), in the analyte reservoir could induce the reversible color change of PMT films in the reporting reservoir between blue and red. Based on this, a keypad lock with H2O2, Glu, and Vtot=?3.0 V as the three inputs and the color change of PMT films as the visible output was established. This system was easily operated and did not need to synthesize the complex compounds or DNA molecules. The security system was easy to reset and could be used repeatedly.  相似文献   
53.
54.
55.
56.
We report the synthesis of altitudinal molecular motors that contain functional groups in their rotor part. In an approach to achieve dynamic control over the properties of solid surfaces, a hydrophobic perfluorobutyl chain and a relatively hydrophilic cyano group were introduced to the rotor part of the motors. Molecular motors were attached to quartz surfaces by using interfacial 1,3‐dipolar cycloadditions. To test the effect of the functional groups on the rotary motion, photochemical and thermal isomerization studies of the motors were performed both in solution and when attached to the surface. We found that the substituents have no significant effect on the thermal and photochemical processes, and the functionalized motors preserved their rotary function both in solution and on a quartz surface. Preliminary results on the influence of the functional groups on surface wettability are also described.  相似文献   
57.
58.
In this paper, a model to calculate the dark current of quantum well infrared photodetectors at high-temperature regime is presented. The model is derived from a positive-definite quantum probability-flux and considers thermionic emission and thermally-assisted tunnelling as mechanisms of dark current generation. Its main input data are the wave functions obtained by time-independent Schrodinger equation and it does not require empirical parameters related to the transport of carriers. By means of this model, the dark current of quantum well infrared photodetectors at high-temperature regime is investigated with respect to the temperature, the barrier width, the applied electric field and the position of the first excited state. The theoretical results are compared with experimental data obtained from lattice-matched InAlAs/InGaAs, InGaAsP/InP on InP substrate and AlGaAs/GaAs structures with rectangular wells and symmetric barriers, whose absorption peak wavelengths range from MWIR to VLWIR. The corresponding results are in a good agreement with experimental data at different temperatures and at a wide range of applied electric field.  相似文献   
59.
Macroscopic and spatially ordered motions of self‐assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter‐scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self‐assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry.  相似文献   
60.

Isoregic conjugated polymers composed of thiophene and dialkoxybenzene units were designed to harvest incident light in the mid‐visible energy range (band gap of 2.1 eV). Poly(1,4‐bis(2‐thienyl)‐2,5‐diheptoxybenzene) (PBTB(OC7H15)2) and poly(1,4‐bis(2‐thienyl)‐2,5‐didodecyloxybenzene) (PBTB(OC12H25)2) have shown significant photovoltaic performance as an electron donor when used in tandem with the electron acceptor [6, 6]‐phenyl C61‐butyric acid methyl ester (PCBM) in bulk hetero‐junction photovoltaic devices. Photovoltaic devices incorporating PBTB(OC7H15)2 and PCBM have shown AM1.5 efficiencies of ~0.6% with a short circuit current density of 2.5 mA/cm2, an open circuit voltage of 0.74 V, and a fill factor of 0.32. Incident Photon‐to‐Current Efficiency (IPCE) of the device was found to be ca. 16% at 410 nm. In order to examine the relationship between the molecular structure of the polymers and their electronic energy levels, and to correlate this with photovoltaic performance, optoelectronic and electrochemical results are discussed in relation to the I‐V characteristics of the devices. Additionally, a computer‐aided simulation is used to gain further insight into the effect of polymer structure on the energetic relationships in the bulk heterojunction devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号